# Rewritten from diffusers import torch import torch.nn as nn import torch.nn.functional as F from typing import Tuple, Union import comfy.model_management import comfy.ops ops = comfy.ops.disable_weight_init class RMSNorm(ops.RMSNorm): def __init__(self, dim, eps=1e-5, elementwise_affine=True, bias=False): super().__init__(dim, eps=eps, elementwise_affine=elementwise_affine) if elementwise_affine: self.bias = nn.Parameter(torch.empty(dim)) if bias else None def forward(self, x): x = super().forward(x) if self.elementwise_affine: if self.bias is not None: x = x + comfy.model_management.cast_to(self.bias, dtype=x.dtype, device=x.device) return x def get_normalization(norm_type, num_features, num_groups=32, eps=1e-5): if norm_type == "batch_norm": return nn.BatchNorm2d(num_features) elif norm_type == "group_norm": return ops.GroupNorm(num_groups, num_features) elif norm_type == "layer_norm": return ops.LayerNorm(num_features) elif norm_type == "rms_norm": return RMSNorm(num_features, eps=eps, elementwise_affine=True, bias=True) else: raise ValueError(f"Unknown normalization type: {norm_type}") def get_activation(activation_type): if activation_type == "relu": return nn.ReLU() elif activation_type == "relu6": return nn.ReLU6() elif activation_type == "silu": return nn.SiLU() elif activation_type == "leaky_relu": return nn.LeakyReLU(0.2) else: raise ValueError(f"Unknown activation type: {activation_type}") class ResBlock(nn.Module): def __init__( self, in_channels: int, out_channels: int, norm_type: str = "batch_norm", act_fn: str = "relu6", ) -> None: super().__init__() self.norm_type = norm_type self.nonlinearity = get_activation(act_fn) if act_fn is not None else nn.Identity() self.conv1 = ops.Conv2d(in_channels, in_channels, 3, 1, 1) self.conv2 = ops.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False) self.norm = get_normalization(norm_type, out_channels) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: residual = hidden_states hidden_states = self.conv1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv2(hidden_states) if self.norm_type == "rms_norm": # move channel to the last dimension so we apply RMSnorm across channel dimension hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1) else: hidden_states = self.norm(hidden_states) return hidden_states + residual class SanaMultiscaleAttentionProjection(nn.Module): def __init__( self, in_channels: int, num_attention_heads: int, kernel_size: int, ) -> None: super().__init__() channels = 3 * in_channels self.proj_in = ops.Conv2d( channels, channels, kernel_size, padding=kernel_size // 2, groups=channels, bias=False, ) self.proj_out = ops.Conv2d(channels, channels, 1, 1, 0, groups=3 * num_attention_heads, bias=False) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.proj_in(hidden_states) hidden_states = self.proj_out(hidden_states) return hidden_states class SanaMultiscaleLinearAttention(nn.Module): def __init__( self, in_channels: int, out_channels: int, num_attention_heads: int = None, attention_head_dim: int = 8, mult: float = 1.0, norm_type: str = "batch_norm", kernel_sizes: tuple = (5,), eps: float = 1e-15, residual_connection: bool = False, ): super().__init__() self.eps = eps self.attention_head_dim = attention_head_dim self.norm_type = norm_type self.residual_connection = residual_connection num_attention_heads = ( int(in_channels // attention_head_dim * mult) if num_attention_heads is None else num_attention_heads ) inner_dim = num_attention_heads * attention_head_dim self.to_q = ops.Linear(in_channels, inner_dim, bias=False) self.to_k = ops.Linear(in_channels, inner_dim, bias=False) self.to_v = ops.Linear(in_channels, inner_dim, bias=False) self.to_qkv_multiscale = nn.ModuleList() for kernel_size in kernel_sizes: self.to_qkv_multiscale.append( SanaMultiscaleAttentionProjection(inner_dim, num_attention_heads, kernel_size) ) self.nonlinearity = nn.ReLU() self.to_out = ops.Linear(inner_dim * (1 + len(kernel_sizes)), out_channels, bias=False) self.norm_out = get_normalization(norm_type, out_channels) def apply_linear_attention(self, query, key, value): value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1) scores = torch.matmul(value, key.transpose(-1, -2)) hidden_states = torch.matmul(scores, query) hidden_states = hidden_states.to(dtype=torch.float32) hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps) return hidden_states def apply_quadratic_attention(self, query, key, value): scores = torch.matmul(key.transpose(-1, -2), query) scores = scores.to(dtype=torch.float32) scores = scores / (torch.sum(scores, dim=2, keepdim=True) + self.eps) hidden_states = torch.matmul(value, scores.to(value.dtype)) return hidden_states def forward(self, hidden_states): height, width = hidden_states.shape[-2:] if height * width > self.attention_head_dim: use_linear_attention = True else: use_linear_attention = False residual = hidden_states batch_size, _, height, width = list(hidden_states.size()) original_dtype = hidden_states.dtype hidden_states = hidden_states.movedim(1, -1) query = self.to_q(hidden_states) key = self.to_k(hidden_states) value = self.to_v(hidden_states) hidden_states = torch.cat([query, key, value], dim=3) hidden_states = hidden_states.movedim(-1, 1) multi_scale_qkv = [hidden_states] for block in self.to_qkv_multiscale: multi_scale_qkv.append(block(hidden_states)) hidden_states = torch.cat(multi_scale_qkv, dim=1) if use_linear_attention: # for linear attention upcast hidden_states to float32 hidden_states = hidden_states.to(dtype=torch.float32) hidden_states = hidden_states.reshape(batch_size, -1, 3 * self.attention_head_dim, height * width) query, key, value = hidden_states.chunk(3, dim=2) query = self.nonlinearity(query) key = self.nonlinearity(key) if use_linear_attention: hidden_states = self.apply_linear_attention(query, key, value) hidden_states = hidden_states.to(dtype=original_dtype) else: hidden_states = self.apply_quadratic_attention(query, key, value) hidden_states = torch.reshape(hidden_states, (batch_size, -1, height, width)) hidden_states = self.to_out(hidden_states.movedim(1, -1)).movedim(-1, 1) if self.norm_type == "rms_norm": hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1) else: hidden_states = self.norm_out(hidden_states) if self.residual_connection: hidden_states = hidden_states + residual return hidden_states class EfficientViTBlock(nn.Module): def __init__( self, in_channels: int, mult: float = 1.0, attention_head_dim: int = 32, qkv_multiscales: tuple = (5,), norm_type: str = "batch_norm", ) -> None: super().__init__() self.attn = SanaMultiscaleLinearAttention( in_channels=in_channels, out_channels=in_channels, mult=mult, attention_head_dim=attention_head_dim, norm_type=norm_type, kernel_sizes=qkv_multiscales, residual_connection=True, ) self.conv_out = GLUMBConv( in_channels=in_channels, out_channels=in_channels, norm_type="rms_norm", ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.attn(x) x = self.conv_out(x) return x class GLUMBConv(nn.Module): def __init__( self, in_channels: int, out_channels: int, expand_ratio: float = 4, norm_type: str = None, residual_connection: bool = True, ) -> None: super().__init__() hidden_channels = int(expand_ratio * in_channels) self.norm_type = norm_type self.residual_connection = residual_connection self.nonlinearity = nn.SiLU() self.conv_inverted = ops.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0) self.conv_depth = ops.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2) self.conv_point = ops.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False) self.norm = None if norm_type == "rms_norm": self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.residual_connection: residual = hidden_states hidden_states = self.conv_inverted(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv_depth(hidden_states) hidden_states, gate = torch.chunk(hidden_states, 2, dim=1) hidden_states = hidden_states * self.nonlinearity(gate) hidden_states = self.conv_point(hidden_states) if self.norm_type == "rms_norm": # move channel to the last dimension so we apply RMSnorm across channel dimension hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1) if self.residual_connection: hidden_states = hidden_states + residual return hidden_states def get_block( block_type: str, in_channels: int, out_channels: int, attention_head_dim: int, norm_type: str, act_fn: str, qkv_mutliscales: tuple = (), ): if block_type == "ResBlock": block = ResBlock(in_channels, out_channels, norm_type, act_fn) elif block_type == "EfficientViTBlock": block = EfficientViTBlock( in_channels, attention_head_dim=attention_head_dim, norm_type=norm_type, qkv_multiscales=qkv_mutliscales ) else: raise ValueError(f"Block with {block_type=} is not supported.") return block class DCDownBlock2d(nn.Module): def __init__(self, in_channels: int, out_channels: int, downsample: bool = False, shortcut: bool = True) -> None: super().__init__() self.downsample = downsample self.factor = 2 self.stride = 1 if downsample else 2 self.group_size = in_channels * self.factor**2 // out_channels self.shortcut = shortcut out_ratio = self.factor**2 if downsample: assert out_channels % out_ratio == 0 out_channels = out_channels // out_ratio self.conv = ops.Conv2d( in_channels, out_channels, kernel_size=3, stride=self.stride, padding=1, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: x = self.conv(hidden_states) if self.downsample: x = F.pixel_unshuffle(x, self.factor) if self.shortcut: y = F.pixel_unshuffle(hidden_states, self.factor) y = y.unflatten(1, (-1, self.group_size)) y = y.mean(dim=2) hidden_states = x + y else: hidden_states = x return hidden_states class DCUpBlock2d(nn.Module): def __init__( self, in_channels: int, out_channels: int, interpolate: bool = False, shortcut: bool = True, interpolation_mode: str = "nearest", ) -> None: super().__init__() self.interpolate = interpolate self.interpolation_mode = interpolation_mode self.shortcut = shortcut self.factor = 2 self.repeats = out_channels * self.factor**2 // in_channels out_ratio = self.factor**2 if not interpolate: out_channels = out_channels * out_ratio self.conv = ops.Conv2d(in_channels, out_channels, 3, 1, 1) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.interpolate: x = F.interpolate(hidden_states, scale_factor=self.factor, mode=self.interpolation_mode) x = self.conv(x) else: x = self.conv(hidden_states) x = F.pixel_shuffle(x, self.factor) if self.shortcut: y = hidden_states.repeat_interleave(self.repeats, dim=1, output_size=hidden_states.shape[1] * self.repeats) y = F.pixel_shuffle(y, self.factor) hidden_states = x + y else: hidden_states = x return hidden_states class Encoder(nn.Module): def __init__( self, in_channels: int, latent_channels: int, attention_head_dim: int = 32, block_type: str or tuple = "ResBlock", block_out_channels: tuple = (128, 256, 512, 512, 1024, 1024), layers_per_block: tuple = (2, 2, 2, 2, 2, 2), qkv_multiscales: tuple = ((), (), (), (5,), (5,), (5,)), downsample_block_type: str = "pixel_unshuffle", out_shortcut: bool = True, ): super().__init__() num_blocks = len(block_out_channels) if isinstance(block_type, str): block_type = (block_type,) * num_blocks if layers_per_block[0] > 0: self.conv_in = ops.Conv2d( in_channels, block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1], kernel_size=3, stride=1, padding=1, ) else: self.conv_in = DCDownBlock2d( in_channels=in_channels, out_channels=block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1], downsample=downsample_block_type == "pixel_unshuffle", shortcut=False, ) down_blocks = [] for i, (out_channel, num_layers) in enumerate(zip(block_out_channels, layers_per_block)): down_block_list = [] for _ in range(num_layers): block = get_block( block_type[i], out_channel, out_channel, attention_head_dim=attention_head_dim, norm_type="rms_norm", act_fn="silu", qkv_mutliscales=qkv_multiscales[i], ) down_block_list.append(block) if i < num_blocks - 1 and num_layers > 0: downsample_block = DCDownBlock2d( in_channels=out_channel, out_channels=block_out_channels[i + 1], downsample=downsample_block_type == "pixel_unshuffle", shortcut=True, ) down_block_list.append(downsample_block) down_blocks.append(nn.Sequential(*down_block_list)) self.down_blocks = nn.ModuleList(down_blocks) self.conv_out = ops.Conv2d(block_out_channels[-1], latent_channels, 3, 1, 1) self.out_shortcut = out_shortcut if out_shortcut: self.out_shortcut_average_group_size = block_out_channels[-1] // latent_channels def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.conv_in(hidden_states) for down_block in self.down_blocks: hidden_states = down_block(hidden_states) if self.out_shortcut: x = hidden_states.unflatten(1, (-1, self.out_shortcut_average_group_size)) x = x.mean(dim=2) hidden_states = self.conv_out(hidden_states) + x else: hidden_states = self.conv_out(hidden_states) return hidden_states class Decoder(nn.Module): def __init__( self, in_channels: int, latent_channels: int, attention_head_dim: int = 32, block_type: str or tuple = "ResBlock", block_out_channels: tuple = (128, 256, 512, 512, 1024, 1024), layers_per_block: tuple = (2, 2, 2, 2, 2, 2), qkv_multiscales: tuple = ((), (), (), (5,), (5,), (5,)), norm_type: str or tuple = "rms_norm", act_fn: str or tuple = "silu", upsample_block_type: str = "pixel_shuffle", in_shortcut: bool = True, ): super().__init__() num_blocks = len(block_out_channels) if isinstance(block_type, str): block_type = (block_type,) * num_blocks if isinstance(norm_type, str): norm_type = (norm_type,) * num_blocks if isinstance(act_fn, str): act_fn = (act_fn,) * num_blocks self.conv_in = ops.Conv2d(latent_channels, block_out_channels[-1], 3, 1, 1) self.in_shortcut = in_shortcut if in_shortcut: self.in_shortcut_repeats = block_out_channels[-1] // latent_channels up_blocks = [] for i, (out_channel, num_layers) in reversed(list(enumerate(zip(block_out_channels, layers_per_block)))): up_block_list = [] if i < num_blocks - 1 and num_layers > 0: upsample_block = DCUpBlock2d( block_out_channels[i + 1], out_channel, interpolate=upsample_block_type == "interpolate", shortcut=True, ) up_block_list.append(upsample_block) for _ in range(num_layers): block = get_block( block_type[i], out_channel, out_channel, attention_head_dim=attention_head_dim, norm_type=norm_type[i], act_fn=act_fn[i], qkv_mutliscales=qkv_multiscales[i], ) up_block_list.append(block) up_blocks.insert(0, nn.Sequential(*up_block_list)) self.up_blocks = nn.ModuleList(up_blocks) channels = block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1] self.norm_out = RMSNorm(channels, 1e-5, elementwise_affine=True, bias=True) self.conv_act = nn.ReLU() self.conv_out = None if layers_per_block[0] > 0: self.conv_out = ops.Conv2d(channels, in_channels, 3, 1, 1) else: self.conv_out = DCUpBlock2d( channels, in_channels, interpolate=upsample_block_type == "interpolate", shortcut=False ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.in_shortcut: x = hidden_states.repeat_interleave( self.in_shortcut_repeats, dim=1, output_size=hidden_states.shape[1] * self.in_shortcut_repeats ) hidden_states = self.conv_in(hidden_states) + x else: hidden_states = self.conv_in(hidden_states) for up_block in reversed(self.up_blocks): hidden_states = up_block(hidden_states) hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1) hidden_states = self.conv_act(hidden_states) hidden_states = self.conv_out(hidden_states) return hidden_states class AutoencoderDC(nn.Module): def __init__( self, in_channels: int = 2, latent_channels: int = 8, attention_head_dim: int = 32, encoder_block_types: Union[str, Tuple[str]] = ["ResBlock", "ResBlock", "ResBlock", "EfficientViTBlock"], decoder_block_types: Union[str, Tuple[str]] = ["ResBlock", "ResBlock", "ResBlock", "EfficientViTBlock"], encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024), decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024), encoder_layers_per_block: Tuple[int] = (2, 2, 3, 3), decoder_layers_per_block: Tuple[int] = (3, 3, 3, 3), encoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (5,), (5,)), decoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (5,), (5,)), upsample_block_type: str = "interpolate", downsample_block_type: str = "Conv", decoder_norm_types: Union[str, Tuple[str]] = "rms_norm", decoder_act_fns: Union[str, Tuple[str]] = "silu", scaling_factor: float = 0.41407, ) -> None: super().__init__() self.encoder = Encoder( in_channels=in_channels, latent_channels=latent_channels, attention_head_dim=attention_head_dim, block_type=encoder_block_types, block_out_channels=encoder_block_out_channels, layers_per_block=encoder_layers_per_block, qkv_multiscales=encoder_qkv_multiscales, downsample_block_type=downsample_block_type, ) self.decoder = Decoder( in_channels=in_channels, latent_channels=latent_channels, attention_head_dim=attention_head_dim, block_type=decoder_block_types, block_out_channels=decoder_block_out_channels, layers_per_block=decoder_layers_per_block, qkv_multiscales=decoder_qkv_multiscales, norm_type=decoder_norm_types, act_fn=decoder_act_fns, upsample_block_type=upsample_block_type, ) self.scaling_factor = scaling_factor self.spatial_compression_ratio = 2 ** (len(encoder_block_out_channels) - 1) def encode(self, x: torch.Tensor) -> torch.Tensor: """Internal encoding function.""" encoded = self.encoder(x) return encoded * self.scaling_factor def decode(self, z: torch.Tensor) -> torch.Tensor: # Scale the latents back z = z / self.scaling_factor decoded = self.decoder(z) return decoded def forward(self, x: torch.Tensor) -> torch.Tensor: z = self.encode(x) return self.decode(z)