import numpy as np import torch import torch.nn.functional as F from PIL import Image class Blend: def __init__(self): pass @classmethod def INPUT_TYPES(s): return { "required": { "image1": ("IMAGE",), "image2": ("IMAGE",), "blend_factor": ("FLOAT", { "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01 }), "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "blend_images" CATEGORY = "postprocessing" def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str): if image1.shape != image2.shape: image2 = self.crop_and_resize(image2, image1.shape) blended_image = self.blend_mode(image1, image2, blend_mode) blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor blended_image = torch.clamp(blended_image, 0, 1) return (blended_image,) def blend_mode(self, img1, img2, mode): if mode == "normal": return img2 elif mode == "multiply": return img1 * img2 elif mode == "screen": return 1 - (1 - img1) * (1 - img2) elif mode == "overlay": return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2)) elif mode == "soft_light": return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1)) else: raise ValueError(f"Unsupported blend mode: {mode}") def g(self, x): return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x)) def crop_and_resize(self, img: torch.Tensor, target_shape: tuple): batch_size, img_h, img_w, img_c = img.shape _, target_h, target_w, _ = target_shape img_aspect_ratio = img_w / img_h target_aspect_ratio = target_w / target_h # Crop center of the image to the target aspect ratio if img_aspect_ratio > target_aspect_ratio: new_width = int(img_h * target_aspect_ratio) left = (img_w - new_width) // 2 img = img[:, :, left:left + new_width, :] else: new_height = int(img_w / target_aspect_ratio) top = (img_h - new_height) // 2 img = img[:, top:top + new_height, :, :] # Resize to target size img = img.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) img = F.interpolate(img, size=(target_h, target_w), mode='bilinear', align_corners=False) img = img.permute(0, 2, 3, 1) return img class Blur: def __init__(self): pass @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "blur_radius": ("INT", { "default": 1, "min": 1, "max": 31, "step": 1 }), "sigma": ("FLOAT", { "default": 1.0, "min": 0.1, "max": 10.0, "step": 0.1 }), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "blur" CATEGORY = "postprocessing" def gaussian_kernel(self, kernel_size: int, sigma: float): x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij") d = torch.sqrt(x * x + y * y) g = torch.exp(-(d * d) / (2.0 * sigma * sigma)) return g / g.sum() def blur(self, image: torch.Tensor, blur_radius: int, sigma: float): if blur_radius == 0: return (image,) batch_size, height, width, channels = image.shape kernel_size = blur_radius * 2 + 1 kernel = self.gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1) image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) blurred = F.conv2d(image, kernel, padding=kernel_size // 2, groups=channels) blurred = blurred.permute(0, 2, 3, 1) return (blurred,) class Quantize: def __init__(self): pass @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "colors": ("INT", { "default": 256, "min": 1, "max": 256, "step": 1 }), "dither": (["none", "floyd-steinberg"],), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "quantize" CATEGORY = "postprocessing" def quantize(self, image: torch.Tensor, colors: int = 256, dither: str = "FLOYDSTEINBERG"): batch_size, height, width, _ = image.shape result = torch.zeros_like(image) dither_option = Image.Dither.FLOYDSTEINBERG if dither == "floyd-steinberg" else Image.Dither.NONE for b in range(batch_size): tensor_image = image[b] img = (tensor_image * 255).to(torch.uint8).numpy() pil_image = Image.fromarray(img, mode='RGB') palette = pil_image.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836 quantized_image = pil_image.quantize(colors=colors, palette=palette, dither=dither_option) quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255 result[b] = quantized_array return (result,) class Sharpen: def __init__(self): pass @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "sharpen_radius": ("INT", { "default": 1, "min": 1, "max": 31, "step": 1 }), "alpha": ("FLOAT", { "default": 1.0, "min": 0.1, "max": 5.0, "step": 0.1 }), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "sharpen" CATEGORY = "postprocessing" def sharpen(self, image: torch.Tensor, sharpen_radius: int, alpha: float): if sharpen_radius == 0: return (image,) batch_size, height, width, channels = image.shape kernel_size = sharpen_radius * 2 + 1 kernel = torch.ones((kernel_size, kernel_size), dtype=torch.float32) * -1 center = kernel_size // 2 kernel[center, center] = kernel_size**2 kernel *= alpha kernel = kernel.repeat(channels, 1, 1).unsqueeze(1) tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels) sharpened = sharpened.permute(0, 2, 3, 1) result = torch.clamp(sharpened, 0, 1) return (result,) NODE_CLASS_MAPPINGS = { "Blend": Blend, "Blur": Blur, "Quantize": Quantize, "Sharpen": Sharpen, }