comfyui/comfy/ldm/ace/vae/music_vocoder.py
2025-06-08 17:44:58 +08:00

543 lines
18 KiB
Python

# Original from: https://github.com/ace-step/ACE-Step/blob/main/music_dcae/music_vocoder.py
import torch
from torch import nn
from functools import partial
from math import prod
from typing import Callable, Tuple, List
import numpy as np
import torch.nn.functional as F
from torch.nn.utils import weight_norm
from torch.nn.utils.parametrize import remove_parametrizations as remove_weight_norm
# from diffusers.models.modeling_utils import ModelMixin
# from diffusers.loaders import FromOriginalModelMixin
# from diffusers.configuration_utils import ConfigMixin, register_to_config
from .music_log_mel import LogMelSpectrogram
import comfy.model_management
import comfy.ops
ops = comfy.ops.disable_weight_init
def drop_path(
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
""" # noqa: E501
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" # noqa: E501
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
def extra_repr(self):
return f"drop_prob={round(self.drop_prob,3):0.3f}"
class LayerNorm(nn.Module):
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
""" # noqa: E501
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape,)
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(
x, self.normalized_shape, comfy.model_management.cast_to(self.weight, dtype=x.dtype, device=x.device), comfy.model_management.cast_to(self.bias, dtype=x.dtype, device=x.device), self.eps
)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = comfy.model_management.cast_to(self.weight[:, None], dtype=x.dtype, device=x.device) * x + comfy.model_management.cast_to(self.bias[:, None], dtype=x.dtype, device=x.device)
return x
class ConvNeXtBlock(nn.Module):
r"""ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.
kernel_size (int): Kernel size for depthwise conv. Default: 7.
dilation (int): Dilation for depthwise conv. Default: 1.
""" # noqa: E501
def __init__(
self,
dim: int,
drop_path: float = 0.0,
layer_scale_init_value: float = 1e-6,
mlp_ratio: float = 4.0,
kernel_size: int = 7,
dilation: int = 1,
):
super().__init__()
self.dwconv = ops.Conv1d(
dim,
dim,
kernel_size=kernel_size,
padding=int(dilation * (kernel_size - 1) / 2),
groups=dim,
) # depthwise conv
self.norm = LayerNorm(dim, eps=1e-6)
self.pwconv1 = ops.Linear(
dim, int(mlp_ratio * dim)
) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = ops.Linear(int(mlp_ratio * dim), dim)
self.gamma = (
nn.Parameter(torch.empty((dim)), requires_grad=False)
if layer_scale_init_value > 0
else None
)
self.drop_path = DropPath(
drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x, apply_residual: bool = True):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device) * x
x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L)
x = self.drop_path(x)
if apply_residual:
x = input + x
return x
class ParallelConvNeXtBlock(nn.Module):
def __init__(self, kernel_sizes: List[int], *args, **kwargs):
super().__init__()
self.blocks = nn.ModuleList(
[
ConvNeXtBlock(kernel_size=kernel_size, *args, **kwargs)
for kernel_size in kernel_sizes
]
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return torch.stack(
[block(x, apply_residual=False) for block in self.blocks] + [x],
dim=1,
).sum(dim=1)
class ConvNeXtEncoder(nn.Module):
def __init__(
self,
input_channels=3,
depths=[3, 3, 9, 3],
dims=[96, 192, 384, 768],
drop_path_rate=0.0,
layer_scale_init_value=1e-6,
kernel_sizes: Tuple[int] = (7,),
):
super().__init__()
assert len(depths) == len(dims)
self.channel_layers = nn.ModuleList()
stem = nn.Sequential(
ops.Conv1d(
input_channels,
dims[0],
kernel_size=7,
padding=3,
padding_mode="replicate",
),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
)
self.channel_layers.append(stem)
for i in range(len(depths) - 1):
mid_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
ops.Conv1d(dims[i], dims[i + 1], kernel_size=1),
)
self.channel_layers.append(mid_layer)
block_fn = (
partial(ConvNeXtBlock, kernel_size=kernel_sizes[0])
if len(kernel_sizes) == 1
else partial(ParallelConvNeXtBlock, kernel_sizes=kernel_sizes)
)
self.stages = nn.ModuleList()
drop_path_rates = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
]
cur = 0
for i in range(len(depths)):
stage = nn.Sequential(
*[
block_fn(
dim=dims[i],
drop_path=drop_path_rates[cur + j],
layer_scale_init_value=layer_scale_init_value,
)
for j in range(depths[i])
]
)
self.stages.append(stage)
cur += depths[i]
self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first")
def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
for channel_layer, stage in zip(self.channel_layers, self.stages):
x = channel_layer(x)
x = stage(x)
return self.norm(x)
def get_padding(kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
class ResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super().__init__()
self.convs1 = nn.ModuleList(
[
weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]),
)
),
]
)
self.convs2 = nn.ModuleList(
[
weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
]
)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.silu(x)
xt = c1(xt)
xt = F.silu(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for conv in self.convs1:
remove_weight_norm(conv)
for conv in self.convs2:
remove_weight_norm(conv)
class HiFiGANGenerator(nn.Module):
def __init__(
self,
*,
hop_length: int = 512,
upsample_rates: Tuple[int] = (8, 8, 2, 2, 2),
upsample_kernel_sizes: Tuple[int] = (16, 16, 8, 2, 2),
resblock_kernel_sizes: Tuple[int] = (3, 7, 11),
resblock_dilation_sizes: Tuple[Tuple[int]] = (
(1, 3, 5), (1, 3, 5), (1, 3, 5)),
num_mels: int = 128,
upsample_initial_channel: int = 512,
use_template: bool = True,
pre_conv_kernel_size: int = 7,
post_conv_kernel_size: int = 7,
post_activation: Callable = partial(nn.SiLU, inplace=True),
):
super().__init__()
assert (
prod(upsample_rates) == hop_length
), f"hop_length must be {prod(upsample_rates)}"
self.conv_pre = weight_norm(
ops.Conv1d(
num_mels,
upsample_initial_channel,
pre_conv_kernel_size,
1,
padding=get_padding(pre_conv_kernel_size),
)
)
self.num_upsamples = len(upsample_rates)
self.num_kernels = len(resblock_kernel_sizes)
self.noise_convs = nn.ModuleList()
self.use_template = use_template
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
c_cur = upsample_initial_channel // (2 ** (i + 1))
self.ups.append(
weight_norm(
ops.ConvTranspose1d(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
if not use_template:
continue
if i + 1 < len(upsample_rates):
stride_f0 = np.prod(upsample_rates[i + 1:])
self.noise_convs.append(
ops.Conv1d(
1,
c_cur,
kernel_size=stride_f0 * 2,
stride=stride_f0,
padding=stride_f0 // 2,
)
)
else:
self.noise_convs.append(ops.Conv1d(1, c_cur, kernel_size=1))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes):
self.resblocks.append(ResBlock1(ch, k, d))
self.activation_post = post_activation()
self.conv_post = weight_norm(
ops.Conv1d(
ch,
1,
post_conv_kernel_size,
1,
padding=get_padding(post_conv_kernel_size),
)
)
def forward(self, x, template=None):
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.silu(x, inplace=True)
x = self.ups[i](x)
if self.use_template:
x = x + self.noise_convs[i](template)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = self.activation_post(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
for up in self.ups:
remove_weight_norm(up)
for block in self.resblocks:
block.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class ADaMoSHiFiGANV1(nn.Module):
def __init__(
self,
input_channels: int = 128,
depths: List[int] = [3, 3, 9, 3],
dims: List[int] = [128, 256, 384, 512],
drop_path_rate: float = 0.0,
kernel_sizes: Tuple[int] = (7,),
upsample_rates: Tuple[int] = (4, 4, 2, 2, 2, 2, 2),
upsample_kernel_sizes: Tuple[int] = (8, 8, 4, 4, 4, 4, 4),
resblock_kernel_sizes: Tuple[int] = (3, 7, 11, 13),
resblock_dilation_sizes: Tuple[Tuple[int]] = (
(1, 3, 5), (1, 3, 5), (1, 3, 5), (1, 3, 5)),
num_mels: int = 512,
upsample_initial_channel: int = 1024,
use_template: bool = False,
pre_conv_kernel_size: int = 13,
post_conv_kernel_size: int = 13,
sampling_rate: int = 44100,
n_fft: int = 2048,
win_length: int = 2048,
hop_length: int = 512,
f_min: int = 40,
f_max: int = 16000,
n_mels: int = 128,
):
super().__init__()
self.backbone = ConvNeXtEncoder(
input_channels=input_channels,
depths=depths,
dims=dims,
drop_path_rate=drop_path_rate,
kernel_sizes=kernel_sizes,
)
self.head = HiFiGANGenerator(
hop_length=hop_length,
upsample_rates=upsample_rates,
upsample_kernel_sizes=upsample_kernel_sizes,
resblock_kernel_sizes=resblock_kernel_sizes,
resblock_dilation_sizes=resblock_dilation_sizes,
num_mels=num_mels,
upsample_initial_channel=upsample_initial_channel,
use_template=use_template,
pre_conv_kernel_size=pre_conv_kernel_size,
post_conv_kernel_size=post_conv_kernel_size,
)
self.sampling_rate = sampling_rate
self.mel_transform = LogMelSpectrogram(
sample_rate=sampling_rate,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
f_min=f_min,
f_max=f_max,
n_mels=n_mels,
)
self.eval()
@torch.no_grad()
def decode(self, mel):
y = self.backbone(mel)
y = self.head(y)
return y
@torch.no_grad()
def encode(self, x):
return self.mel_transform(x)
def forward(self, mel):
y = self.backbone(mel)
y = self.head(y)
return y